CONFIGURA

PGC, Quality and Programming Style

Be smart and create a quality oriented culture to save money, gain efficiency and get ahead of
your competition!

GAran Rydqvist

Co-founder and Vice President Research and Development of Configura. More than 40
years of computer programming experience. Architect of the CM programming language
- the foundation of CET Designer. Specializes in Dynamic Syntax & Metaprogramming,
Large System Programming, Ul Design and Parametric Manufacturing. Master of Science
from Linkoping Institute of Technology (LiTH) (1984-1987). PhD Student in Hardware
Synthesis LiTH (1987-1889) including 6 months at Xerox Palo Alto Research Center in Palo
Alto, California (1989). Co-founded Configura 1990.

PGC

PGC is a sslution development fragfework for
the implemeMgtion of quick, g#ficient, and
intuitive graphicalonfigugeftion software
customized to specifi®gfoducts and solution

domains.

Parametric - a set of propertjg®€ whose values determine€Nge characteristics or behavior of
something :

Graphical - a visual rgfresentation in 2D or 3D

Configuration - g#felative arrangement of parts or elements ? Gc

at
ooVt

i L3 WRERE IS
\\\\\\\\\\

'''''

PGC Fundamentals

Flowing ease

Touch and feel

Direct manipulation
Interpret gestures

Assist

Remember all input,
Explorative

Encourage experimentation

PGC - Condensed Ul

Small initial Ul

High polymorphism
Few choices — large number of design

posibilities

Play, interact, explore and design

PLANET
EX

e)

@@

Cmatlon |

SWEETENED :

i CONDENSEDMI

PGC - Immersion

* Pull the user into an immersive experience

* Aesthetical, technical and other constraints
and requirements

* Uninterrupted

PGC Fundament: Polymorphism

Select Style and Material ... | X

Cabinet height: |K (continental) >l
Auto measure: |All (Colored) 4|
¥ Automatic interior fittings
[~ =l Corner Cabinet e
. s e OO0 A0NEE
i Wy dOEBO
e OgR0E
Sl R G ' CIEHEEEHEE
Tall all Space Corner
T WET) o s
» l] I 11]] I 1
- L S

Corner
=l More Base Cabinets
Steel Porcelsin Low
U U
Diskus 36° 256 184
Wyl
o
| : |
=l More Wall Cabinets
Above Top
.-

PGC Fundament: Connection Rules

PGC Fundament: Mirror Selection

PGC Fundament: Auto Distribution

PGC Fundament: Information Reuse

shelf

H76 14% HT6 14" . do4”
e ¢ 1408° 76 144" e
\ \. \ N \, : \ N\
A N ; \ A R =
v ') . | x
\ \ N N N\ ‘
N | N ko | =
N \ J N N R |
ey g ’{.- = ‘
T T U
LI & Sasagth |
2§ & % |l
ais curvaaius il N ..1..-1] N = —
ui] E} ud us|

PGC Fundament: Auto Create

PGC Fundament: Global Change

PGC Fundament: Technica
Calculations

i

p0315m/ 1176 mis P05 m/1245mis p02m/973mis

44 13
< < v S

Usage grade (%): 100

N static Pressure, SP Powder type: Welding
4 500

4 000

3 500

3 000,

2 500

2 000

1 500

cfm , 1 184 Pa) NC30/15
© 1 000, '—\

500

Air Flow, cfm
\ § - -) :; @ : - =
D1. Pressure Drop Diagram I

2 F i3

PGC

What is Quality?

Phaedrus (after Plato's dialogue), a |
teacher of creative and technical writingh
at a small college

became engrossed in the question of
what defines good writing

and what in general defines good, or
"Quality".

His philosophical investigations
eventually drove him insane

and he was subjected to
electroconvulsive therapy which

permanently changed his personality
The book sold 5 million copies worldwide. It

was originally rejected by 121 publishers, more
than any other bestselling book

Quality vs Kung Fu

* Pirsig: quality is undefinable
* Webster: a high level of value or excellence

the standard of something as measured against other things of a similar
kind; the degree of excellence of something.

o <5

“Good enough”

http://budugllydesign.com/

™
md | Ifyou‘aregdooking fo
the typos that'had previgs

[ORDERING}

“Good enough” - why should | care?

Apple Inc.

“Quality is more important than quantity.
NASDAQ: AAPL - 16 sep. 05:41 GMT-4

One home run is much better

| -, : | 2 than two doubles.”
115,57 uso 43,80 (3,40 %) . :

1 dag & dagar 1 manad 3 m{

Oppningskurs 113,86 Borsvarde
Hogst 115,73 P/E-tal
Lagst 113,49

Diravk 1,97%

A “Little” Success!

DOOOONS3=@ g |
& 2 I

*

=l
=
=
=2
cl

<
11l

Apple Unboxing

Email

abcdefghijImnopqrstuvwxyz@
1234567890 . _ -@ .com .net .edu

ABC abc #4-

Next

Traditional TCQ

Design gwlickly and high quality -3#&xpensive
Design quickhand cheaply >”low quality

Design cheaply artd\ high#Quality -> long time

Quality Driven Development

* Quality driven all the way through
* Bounds time

e Bounds cost

Low Quality €ede quickly drives cost and time
towards unreasonable levels

What is a Ul?

What is a Ul?

2

Large System Development

Programs are built from language definitions and then
BY combining these into larger systems.

If the language is precise, consistent and orthogonal
large systems can be described with little or medium
effort.

Imprecise language quickly increases the effort of
understanding.

Imprecise programs become full of fixes. Complexity
Increases.

Fixes create unwanted side-effects (bugs/issues).
Cost goes through the roof.

Programming Style

| will tell you my secret!

From a lifetime of programming ..
You will be disappointed ..

Programming Style
The Secret

The longer | work with programming
e Simplicity

- lieat
+—Bebugging

Programming Style
The Secret

How do you achieve simplicity
* Language Precision

the more precisely you can define your
vocabulary used to describe the problem the
easier it becomes

Language

Natural language

Mathematics

Wittgenstein

The early Wittgenstein was concerned that all
philosophical problems arise from
misconception of language

So he set out to f|x that

1*

1.1

1.11

1.12

Wittgenstein
Tractatus Logico-Philosophicus

Start

German
Die Welt ist alles, was der Fall ist.

Die Welt ist die Gesamtheit der Tatsa-
chen, nicht der Dinge.

Die Welt ist durch die Tatsachen be-
stimmt und dadurch, dasses alle Tat-
sachen sind.

Denn, die Gesamtheit der Tatsachen
bestimmt, was der Fall ist und auch, was
alles nicht der Fall ist.

End

Er muss diese Sitze iiberwinden,
dann sieht er die Welt richtig.

Wovon man nicht sprechen kann, dar-
tiber muss man schweigen.

Ogden

The world is everything that is the
case.

The world is the totality of facts, not
of things.

The world is determined by the facts,
and by these being all the facts.

For the totality of facts determines

both what is the case, and also all that is
not the case.

He must surmount these propositions;

then he sees the world rightly.

Whereof one cannot speak, thereof one

must be silent.

Pears/McGuinness
The world is all that is the case.

The world is the totality of facts, not
of things.

The world is determined by the facts,
and by their being all the facts.

For the totality of facts determines

what is the case, and also whatever is
not the case.

He must transcend these propositions,

and then he will see the world aright.

What we cannot speak about we must

pass over in silence.

Programmers

in@lu de <stdic a
#inc“’udp_ C:/Priva
$definel chmijﬂf"
$define 110

\.\/‘1‘

o h{ond SO Y (03 Jrinpsiagei (ARG €T RLRE

¢ il SRS [N, iconn b 4 L, 2 co N F I G U RA
(Eai- 3 T [V et e anan e, +

LBlsh 230 o (Fpr o vt) SEEET 4

£ 0 v U CE BReveitTl f e seder 1T a i,

Jikertsm ¥ (BN B Y s iy m m

“hd B o (e B Ot ey (o) r O r a e r S
0 (-6) ‘U-‘ % 1'-"51' '%l'_t.r s, (0 #Ldy %. 2;‘5—!&"1‘

% Bonr Felert B B SR Ok

ER-o B o SR - ek coic 1)

ER
ukd

e Very hi lQ - complicated minds :
* Generally striving towards disorder \
* So proud of solving bug X357 R
* So proud of creating function Y221

CONFIGURA

Programming Value Chain

Prototype

A messy piece of code doing

something

Totally dependent on the

programmer

Reusability Zero

Debug time dominates

LN 13— a s s
for (z in vertices) tMesh.vertices << pointF(z);
if (hasNormals) for (z in normals) tMesh.normals << vectorF(z);

point[] points();

int cnt;

point lastPoint;

point currentPoint;

int lastRef;

DirectionEnv{} directions();
directions.setHash{function directionEnvHash);
directions.setEq(function directionEnvEq);

for {loop in loopCounts) {

int[] refs();
lastRef = vertexReferences[loop+cnt-1];
lastPoint = vertices[lastRef];
directions.clear();
while {int i = 0+cnt; | < loop+cnt; ++i) {
currentPoint = vertices[vertexReferences[i]];
points <= currentPoint;
wector v = currentPoint-lastPoint;
DirectionEnv dir(v);
if (dir in directions) {
dir = directions.get(dir);
dir.addReferences([lastRef, vertexReferences[i]]);
1 oelse {
dir.addReferences([lastRef, vertexReferences[i]]);
directions << dir;

lastPoint = currentPoint;
lastRef = wertexReferences[i];
refs << |lastRef;

if (loop == 4 or allPointsInSameFlane(points)) {
ADynamicMeshEnw env = triangulatePoints (points);
for (z in env.triangles) {
tMesh.triangles << refs[z];

¥
¥ else {
for (z in directions) if (z.references.count < 3) directions.remove(z);
int noOfPFlanes = (points.count - 2)/2;
DirectionEnv toBeRemoved;
double longestDist = 0;
if (directions.count = noOfPlanes) {
for (dir in directions) {
point lastF = vertices[dir.references.first];
double totalDist;
for (z in dir.references, start=1) {
totalDist += lastP.distanceSqr(vertices[z]);
lastP = wertices[z];

totalDist += lastP.distanceSqgr({vertices[dir.references.first]);
if (totalDist = longestDist) {

toBeRemowved = dir;

longestDist = totalDist;

it {toBeRemoved) directions.remove(toBeRemoved);

}
for (dir in directions) {
point[] pts();
for (z in dir.references) pts << vertices[z];
if {(pts.count = 2) {
ADynamicMeshEnv env = triangulatePoints(pts);
for (z in env.triangles) {
tMesh.triangles << dir.references[z];

}
¥

}
points.clear();
cnt += loop;

Programmers
Most Popular Programming Method

e [] [) e 2 -
\ ‘v
i

* |Intense Concentration

e Mixed with Trial and Error

CONFIGURA

Programmers’ Activities

e DSL-

* modularizing —

* abstracting -

e generalizing -

* refactoring - some

* minimize/tune/optimize —
* cleaning up - seldom

e adding - all the time

CONFIGURA
Reality

Functionality

Speed/response

Time

Time

Debugging

/ Time

CONFIGURA
Programmers’ Time

e | don’t have time!

(© CONFIGURA
Programmers’ Tim

Programming

Getting the vocabulary exactly right

!

Design a (conceptual) machine
Simple yet complete

~ “BEverything should be made
3 as simple as possible.
But not simpler.”

Albert Einstein

Programming

Thought of as a primarily logical process

Quality based emotional process

Programming
Quality
* Quality is high-level
* Rests on Design
* And Performance

* And Bounds Cost
—compare to TCQ

Performance

Key Po

Function Oriented Pitfall

o
=4

Singular Function Focus

Y

Performance Degradation

Y

Quality Degeneration

Unbounded Cost / Time

The 10 Countermeasures

1. Design Based

— A primary vision (PGC) drives. Every activity, decision, enhancement,
design is evaluated against the primary vision

2. Coaching based design. Leverage experience.

3. Regular coaching between mentor and team-member. The vision
must remain uncompromized.

4. Strong encouragement for code improvement of all kinds.

5. Scheduled Performance focus.

6. Scheduled Quality focus.

7. Scheduled initiative time.

8. Measure activities. Where is time spent/wasted.

9. Managers must role play being users.

10. Continuous improvement. Encourage programmers good habits.

CONFIGURA

IF WE DON’T

(© CONFIGURA

(© CONFIGURA
The Art of Programming

1. Programming is a matter of vital importance for mankind; the province of
life or death; the road to survival or ruin. It is mandatory that it be thoroughly
studied.

2. Therefore, appraise it in terms of 5 fundamental factors and 7 golden rules.

6. Know yourself, your process and your language and in a 100 releases you
will prevail.

6a. If you know yourself, but not your process, every other release will be in
peril.

6b. If you do not know yourself, nor your process, every release will be in peril.

