
PGC, Quality and Programming Style
Be smart and create a quality oriented culture to save money, gain efficiency and get ahead of 

your competition!

Co-founder and Vice President Research and Development of Configura. More than 40 
years of computer programming experience. Architect of the CM programming language 
- the foundation of CET Designer. Specializes in Dynamic Syntax & Metaprogramming, 
Large System Programming, UI Design and Parametric Manufacturing. Master of Science 
from Linköping Institute of Technology (LiTH) (1984-1987). PhD Student in Hardware 
Synthesis LiTH (1987-1889) including 6 months at Xerox Palo Alto Research Center in Palo 
Alto, California (1989). Co-founded Configura 1990.

Göran Rydqvist



PGC, Quality and Programming Style
PGC

Parametric Graphical Configuration
The flow and ease of PGC



PGC

PGC is a solution development framework for 
the implementation of quick, efficient, and 
intuitive graphical configuration software 
customized to specific products and solution 
domains.

• Parametric - a set of properties whose values determine the characteristics or behavior of 
something

• Graphical - a visual representation in 2D or 3D

• Configuration - a relative arrangement of parts or elements



PGC Fundamentals

• Flowing ease

• Touch and feel

• Direct manipulation

• Interpret gestures

• Assist

• Remember all input, 

• Explorative

• Encourage experimentation



PGC - Condensed UI

• Small initial UI

• High polymorphism

• Few choices – large number of design 
posibilities

• Play, interact, explore and design



PGC - Immersion

• Pull the user into an immersive experience

• Aesthetical, technical and other constraints 
and requirements

• Uninterrupted

• Universal gestures

• Clear visual feedback of effects and results



PGC Fundament: Polymorphism



PGC Fundament: Connection Rules



PGC Fundament: Mirror Selection

Cursor

Cursor



PGC Fundament: Auto Distribution



PGC Fundament: Information Reuse



PGC Fundament: Auto Create



PGC Fundament: Global Change



PGC Fundament: Technical 
Calculations



PGC

Quality



PGC, Quality and Programming Style

Quality



What is Quality?

• Phaedrus (after Plato's dialogue), a 
teacher of creative and technical writing 
at a small college

• became engrossed in the question of 
what defines good writing

• and what in general defines good, or 
"Quality". 

• His philosophical investigations 
eventually drove him insane

• and he was subjected to 
electroconvulsive therapy which 
permanently changed his personality

The book sold 5 million copies worldwide. It 
was originally rejected by 121 publishers, more 
than any other bestselling book



Quality vs Kung Fu

• Pirsig: quality is undefinable

• Webster: a high level of value or excellence

the standard of something as measured against other things of a similar 

kind; the degree of excellence of something.



“Good enough”

http://budugllydesign.com/



“Good enough” - why should I care?



A “Little” Success!



Apple Unboxing



Even the Sun has Spots



Traditional TCQ

• Design quickly and high quality -> expensive

• Design quickly and cheaply -> low quality

• Design cheaply and high quality -> long time



Quality Driven Development

• Quality driven all the way through

• Bounds time

• Bounds cost

Low Quality Code quickly drives cost and time 

towards unreasonable levels



What is a UI?

UI

Conceptual 
Design /
Model



UI

Conceptual 
Design /
Model

What is a UI?



PGC, Quality and Programming Style

Programming Style



Large System Development

• Programs are built from language definitions and then 
BY combining these into larger systems. 

• If the language is precise, consistent and orthogonal
large systems can be described with little or medium 
effort.

• Imprecise language quickly increases the effort of 
understanding. 

• Imprecise programs become full of fixes. Complexity 
increases. 

• Fixes create unwanted side-effects (bugs/issues). 
• Cost goes through the roof.



Programming Style

I will tell you my secret!

From a lifetime of programming ..

You will be disappointed ..



Programming Style
The Secret

The longer I work with programming

• Simplicity

• Complication

• Debugging



Programming Style
The Secret

How do you achieve simplicity

• Language Precision

the more precisely you can define your 
vocabulary used to describe the problem the 

easier it becomes



Language

Natural language

Mathematics



Wittgenstein

The early Wittgenstein was concerned that all 
philosophical problems arise from 
misconception of language

So he set out to fix that



Wittgenstein
Tractatus Logico-Philosophicus

Start

End



Programmers



Programmers

• Very hi IQ – complicated minds

• Generally striving towards disorder

• So proud of solving bug X357

• So proud of creating function Y221

• Problem subroutine jumping



Programming Value Chain
Prototype

• A messy piece of code doing 
something

• Totally dependent on the 
programmer

• Debug time dominates

• Reusability Zero



Programmers
Most Popular Programming Method

• Simplification

• Intense Concentration

• Mixed with Trial and Error

Don’t disturb ..



Value

Programmers’ Activities

• DSL – what what what?

• modularizing – ZILCH

• abstracting - even less

• generalizing - slightly

• refactoring - some

• minimize/tune/optimize – not much

• cleaning up - seldom

• adding - all the time



Reality

Functionality

Time

Speed/response

Time

Debugging

Time



Programmers’ Time

• I don’t have time!



Programmers’ Time

UI?



Programming

Getting the vocabulary exactly right

Design a (conceptual) machine

Simple yet complete



Programming

Thought of as a primarily logical process

Quality based emotional process



Programming
Quality

• Quality is high-level

• Rests on Design

• And Performance

• And Bounds Cost

– compare to TCQ

Quality

DesignPerformance



Key Point

Function Oriented Pitfall

Singular Function Focus

Performance Degradation

Quality Degeneration

Unbounded Cost / Time



The 10 Countermeasures

1. Design Based
– A primary vision (PGC) drives. Every activity, decision, enhancement, 

design is evaluated against the primary vision

2. Coaching based design. Leverage experience.
3. Regular coaching between mentor and team-member. The vision 

must remain uncompromized.
4. Strong encouragement for code improvement of all kinds.
5. Scheduled Performance focus.
6. Scheduled Quality focus.
7. Scheduled initiative time.
8. Measure activities. Where is time spent/wasted.
9. Managers must role play being users.
10. Continuous improvement. Encourage programmers good habits.



IF WE DON’T



IF WE DO



The Art of Programming

Freeform adaption from Sun Tzu – The Art of War

1. Programming is a matter of vital importance for mankind; the province of 
life or death; the road to survival or ruin. It is mandatory that it be thoroughly 
studied.

2. Therefore, appraise it in terms of 5 fundamental factors and 7 golden rules.

…

6. Know yourself, your process and your language and in a 100 releases you 
will prevail.

6a. If you know yourself, but not your process, every other release will be in 
peril.

6b. If you do not know yourself, nor your process, every release will be in peril.


